Analysis and design of class E power amplifier considering MOSFET parasitic input and output capacitances
نویسندگان
چکیده
In this study, design theory and analysis for the class E power amplifier (PA), considering the metal oxide semiconductor field effect transistor (MOSFET) parasitic input and output capacitances, are proposed. The input resistance and capacitances cause non-ideal input voltage at gate terminal, which affect the specifications of the class E PA. In the proposed study, non-linear drain-to-source, linear gate-to-drain and linear gate-to-source MOSFET parasitic capacitances are considered, while zero voltage and zero derivative switching conditions are achieved. Moreover, the input resistance and the value of the input voltage are taken into account in the design theory. According to the obtained results, the duty cycle of the MOSFET depends on the MOSFET threshold voltage, input voltage, input series resistance, and some other parameters, which will be explained in this study. A design example is finally given to describe the design procedure at 1 MHz operating frequency along with the experimental result. The circuit simulation is also performed using PSpice software. The measured results showed quantitative agreements with simulation and theory results.
منابع مشابه
A Class E Power Amplifier with Low Voltage Stress
A new output structure for class E power amplifier (PA) is proposed in this paper. A series LC resonator circuit, tuned near the second harmonic of the operating frequency is added to the output circuit. This resonator causes low impedance at the second harmonic. The output circuit is designed to shape the switch voltage of the class E amplifier and lower the voltage stress of the transistor. T...
متن کاملA Class E Power Amplifier with Low Voltage Stress
A new output structure for class E power amplifier (PA) is proposed in this paper. A series LC resonator circuit, tuned near the second harmonic of the operating frequency is added to the output circuit. This resonator causes low impedance at the second harmonic. The output circuit is designed to shape the switch voltage of the class E amplifier and lower the voltage stress of the transistor. T...
متن کاملBehaviors of EER Transmitter with Class-E Amplifier due to MOSFET Parasitic Capacitances
The class-E amplifier [1]-[11] is remarked as the next candidate of digital wireless power transmitters. Non-switching power amplifiers suffer from low power-conversion efficiency due to their inherent power loss in high back off area. Hence, switching power amplifiers such as class-D and E are remarked as a remedy for improving power-conversion efficiency and prolonging battery lifetime of por...
متن کاملEffective Circuit Design Techniques to Increase Mosfet Power Amplifier Efficiency
These impedance conditions correspond to the class F operating condition, the ideal voltage and current shapes for which are shown in Figure 1. Here a sum of odd harmonics produces a square voltage waveform and a sum of even harmonics approximates a half-sinusoidal current shape. In reality, both extrinsic and intrinsic transistor parasitic elements have a substantial effect on the efficiency, ...
متن کاملAnalysis and Design of High Gain, and Low Power CMOS Distributed Amplifier Utilizing a Novel Gain-cell Based on Combining Inductively Peaking and Regulated Cascode Concepts
In this study an ultra-broad band, low-power, and high-gain CMOS Distributed Amplifier (CMOS-DA) utilizing a new gain-cell based on the inductively peaking cascaded structure is presented. It is created bycascading of inductively coupled common-source (CS) stage and Regulated Cascode Configuration (RGC).The proposed three-stage DA is simulated in 0.13 μm CMOS process. It achieves flat and high ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IET Circuits, Devices & Systems
دوره 10 شماره
صفحات -
تاریخ انتشار 2016